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hundred atoms in the asymmetric unit one may need 
to use triple-phase invariants with a standard deviation 
of n/3 or so. Again, in order to introduce enough 
magic-integer defined phases, it will be necessary to 
use long magic-integer sequences with up to eight 
integers. If a maximum integer of 100 can be tolerated 
then a root-mean-square error of slightly more than 
n/4 will result. If three variables, x, y and z, are used 
then there will be 24 primary reflexions and, our 
experience suggests, 70 to 100 secondary reflexions. 
This will be a large base from which a complete struc- 
ture solution should be possible. The time requirement 
for the whole process would be dominated by that to 
calculate a Fourier map at intervals of 1/400 in each 
of three directions. While this is a formidable task it is 
by no means an impossible one and it would be worth 
while to put this amount of effort into an operation 
which offered real hope of success with a major 
structural problem. 

Computational aspects of this project were primarily 
carried out in the Centre de Calcul, Universit6 de 

Louvain, and we are grateful for the generous provi- 
sion of these facilities. We are also grateful to Profes- 
sor R. B. Bates for providing the data for cephalotaxine 
and lithocholic acid. 
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generous support of our activity has been given by the 
Science Research Council. 
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In addition to the classical experimental methods of crystal diffraction a number of new methods have 
become available using the time-of-flight technique for neutrons and energy-dispersive detectors for X- 
rays. It is shown that there are simple relations between the formulae for the integrated intensities of the 
different methods, and that the intensity formulae for all the methods can be simply generated, provided 
that one of them is derived in the usual way. Formulae are given for the powdered crystal and the ideally 
imperfect crystal in the kinematical approximation as well as for the large perfect crystal in the frame- 
work of the dynamical theory. 

I. Introduction 

The integrated intensity is an important quantity in 
all diffraction methods used for structure analysis. If 
a monochromatic beam is used the integration is per- 
formed over the scattering angle while in the case of 
a polychromatic beam the integration is over wave- 
length. Table 1 summarizes the possible experimental 
methods and presents the formulae for the integrated 
intensities in the kinematical approximation. In the 

* Also at A.E.C.. Riso DK-4000 Roskilde, Denmark. 

case of a powdered crystal the formulae apply to the 
whole Debye-Scherrer ring (cone) and in the case of 
a rotating single crystal a full (2n) rotation is assumed. 
We shall refer to the methods in Table 1 as A1, A2 etc. 
and discuss them below. The notation used is explained 
in §§ 2 and 3. 

The classical methods are the powder method (A 1), 
the Laue method (B2) and the monochromatic rotat- 
ing-crystal method (A3). However, in the last few years 
the time-of-flight (TOF) methods for neutrons and the 
energy-dispersive spectroscopic (EDS) methods for 
X-rays have made the remaining methods listed in 
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Table 1 experimentally interesting. In the latter meth- 
ods a fixed scattering angle, 200, and a polychromatic 
incident beam are used. The wavelength distribution of 
the scattered beam is measured by means of the time- 
of-flight technique in the neutron case and using semi- 
conductor detectors in the X-ray case. 

In the standard textbooks [e.g. Zachariasen (1945), 
von Laue (1960)] the formula for the integrated inten- 
sity of each of the classical methods is derived sep- 
arately and the calculations are rather lengthy. We 
shall show that there are simple relations between the 
formulae for the integrated intensities of all the meth- 
ods listed in Table 1. The relations are closely related 
to the diffraction geometries and to the Lorentz fac- 
tors of the methods considered. As will be demon- 
strated, they enable a quick derivation of the integrated 
intensity formula for any of the methods in Table 1, 
provided that one of them is derived in the usual way. 

The formulae given in Table 1 are derived with the 
assumption of neglible absorption and extinction (ideal- 
ly imperfect crystal). Several materials can nowadays 
be grown in the form of large single crystals of high 
perfection. For these crystals the dynamical theory of 
diffraction is used. Integrated intensity formulae for 
the relevant diffraction methods are given in § 4. 

2. Relations between the intensity formulae 

All the integrated intensities are proportional to the 
intensity of the incident beam, io(2)A2, where io(2) is 
the intensity per unit wavelength range and A2 is the 
spectral width. In the monochromatic methods (col- 
umn A in Table 1) the wavelength is fixed (2=20). The 
spectral width, A20, is a constant determined by the 
experimental conditions. 

In the polychromatic methods (column B in Table 1) 
the Bragg angle is fixed (0= 00) and the angular width, 
A00, is a constant determined by the experimental con- 
ditions. The wavelength range of the diffracted beam 
is then given by 

A2=2  cot 00A00. (1) 

Thus, given the integrated intensity of any method in 
the A column, the integrated intensity of the corre- 
sponding B method (on the same horizontal line in 
the table) is obtained by substituting A20 for A2 given 
by equation (1). 

The integrated intensity of B1 is obtained by multi- 
plying that of B2 by the factor 

j'½ cos OoAOo, (2) 

wherej '  is the multiplicity factor for the powder method 
and ½ cos OoAOo is the probability that a crystallite in 
the powder is oriented for Bragg reflexion. 

The integrated intensity of B3* is obtained by multi- 
plying that of B2 with the factor 

j,, AOo 
2re ' (3) 

where j "  is the multiplicity factor for the rotating- 
crystal method and A0o/(2z 0 is the fraction of time dur- 
ing which the crystal is oriented for Bragg reflection. 

In the A column there are only two methods be- 
cause no integration is possible in method A2. The 
integrated intensity of A1 is obtained by multiplying 
that of A3 with the factor 

rc cos 0,  (4) 

and by substituting j "  with j ' .  The physical signifi- 
cance of equation (4) is seen by rewriting it as follows: 

2zc 
½ cos 0A0 A--~ " (5) 

Like equation (2) the factor contains the probability 
that a crystallite in the powder is oriented for Bragg 
reflexion. In addition one has to take into account that 
the crystallite is diffracting continuously whereas the 
rotating crystal is oriented for reflexion only a frac- 
tion of time. 

3. Formulae for the ideally imperfect crystal 

Using the relations derived above, one can begin with 
the theoretical expression for the integrated intensity 
of an arbitrary method and then work through a closed 
loop. As an example we will begin with the well known 
formula for the total diffracted power in a Debye- 
Scherrer ring (method A I): 

P (6) P,tl =j'io(2o)A2o VN2IF[2,)~ 4 sin 0 ' 

* For simplicity only zero-layer reflexions are considered 
here. The treatment can easily be extended to reflexions in ar- 
bitrary layers. 

Table 1. Integrated-intensity formulae for diffraction methods (k&ematical approximation) 
Beam A. Monochromatic B. Polychromatic 

Sample 2 = 2o 0 = 0o 
cos OoAOo 1. Powdered p , j,io(2)VNZlFi224p 4 crystal j'i0(20)d20 VN21FI22] 4 sin 0 sin s-0o t 

2. Fixed single No integrated intensity p 
crystal measurements possible io(2) VN21F1224 2 sin s 0o 

pAOo 3. Rotating single P * j"i0(2) VN2[F[224 47~ sin 2 0u :1: crystal J"i°(2°)A2°VN2[F[223 2re sin 2~ 

* Zachariasen (1945). I" Buras (1963). :]: Buras, Giebultowicz, Minor & Raica (1970). 
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where V=crystal volume, N=number  of crystal unit 
cells per unit volume, F--structure factor and p =  
polarization factor. 

In order to make the equations valid for neutrons 
as well as for X-rays we have included the classical 
electron radius e2/mc2=2"82 × 10 -13 cm in the struc- 
ture factor for X-rays. In case of X-rays the polariza- 
tion factor, p, depends on the state of polarization of 
the incident beam and the scattering angle (Zacharia- 
sen, 1945). For nuclear scattering of unpolarized neu- 
trons p equals 1. In case of neutron magnetic scatter- 
ing the integrated intensity depends on the polariza- 
tion state of the neutron beam, the state of alignment 
of the magnetic moments within the sample and the 
scattering angle (Bacon, 1962). A detailed discussion 
of this case is beyond the scope of this note. 

Using the procedures described by the equations (1), 
(2) and (3) one has 

P81=j'io(2) VNE[FI224 p cos OoAOo 
4 sin 2 0o ' (8) 

P (9) P82= i°(2)VNZlFlZ24 2 sin 2 00 ' 

pB3=j,,io(2 ) VNZIFI224 pAOo 
4re sin 2 0o ' (10) 

P .... P (11) a3='l t°('~°)AA°VN2IF[2'~3 2re sin 20 " 

Finally it is seen that the procedure described by 
equation (4) transforms equation (I I) into an expres- 
sion identical with equation (5) which was the starting 
point. 

where R y is the reflexion power integrated on the y 
scale,* So is the cross section of the incident beam, b 
is the ratio of the direction cosines of the incident and 
reflected beams relative to normal to surface, and K 
is a polarization factor which in the X-ray case is 
unity for normal polarization and Icos 201 for parallel 
polarization of the incident beam. 

The diffracted energy of method B3 is obtained by 
the substitution described in connexion with equa- 
tion (1): 

EB3----- RYio(2)Solbl - 1/2NIFIA3 KAOo 
2zwa sin 2 0o (13) 

Equation (13) is, to the best knowledge of the authors, 
derived for the first time in this note. 

Finally, the integrated power of the classical Laue 
method (method B2) is obtained by using a slight 
modification of equation (3): 

e9 K 
P82= ~ En3= RYi°(2)S°IbI-1/2NIF[23 2re sin 2 0o" (14) 

5. Conclusion 

We have shown that (a) in the framework of both the 
kinematical and the dynamical theories of diffraction 
there are relations of simple physical significance be- 
tween the intensity formulae of the different experi- 
mental methods for integrated intensity measurements, 
and (b) in the framework of each of the two theories 
of diffraction the formulae for the integrated inten- 
sities of all methods can be simply generated using 
the above mentioned relations, provided that one of 
them is derived in the usual way. 

4. Formulae for the large perfect crystal 

The relations given in § 2 are slightly modified when 
dealing with a large perfect crystal. The integrated 
quantity recorded in the rotating-crystal methods (,43 
and B3) is conveniently defined as the total amount 
of energy, E, which is diffracted as the crystal is turned 
with angular velocity, o9, through the reflexion range. 
The mlfltiplicity factor is, of course, unity. 

The powder methods are, for obvious reasons, ex- 
cluded in this section. One therefore cannot work 
through a closed loop of intensity formulae as in § 3. 
However, as shown below, one cart begin with a well- 
known formula of a classical method and end with 
another well known formula. 

Beginning with method ,43 the integrated energy is 
given by (Zachariasen, 1945) 

EAa = R yt0(A0)A A0Solb I- 1/ZNIFIAZ _ _  
K 

non sin 20 ' 
(12) 

The authors wish to thank Professors A. Lindegaard 
Andersen and L. Chadderton for reading the manu- 
script and for valuable comments. 

* R y generally has to be calculated by numerical  integration. 
However,  in the Bragg case for a crystal with a negligibly small 
absorpt ion coefficient one has the simple solutions R y -  8 

3 

(Darwin solution) or RY=7~ (Ewald solution). The Darwin 
solution is generally preferred for X-rays whereas the Ewald 
solution is more  relevant for neutrons.  
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